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Breakthrough

 Deep Learning: machine
learning algorithms based on
learning multiple levels of
representation / abstraction.

Amazing improvements in error rate in object recognition, object
detection, speech recognition, and more recently, in natural
language processing / understanding



Initial Breakthrough in 2006 A\ bn,
Canadian initiative: CIFAR j

e Ability to train deep architectures by
using layer-wise unsupervised
learning, whereas previous purely
supervised attempts had failed

* Unsupervised feature learners:
* RBMs

e  Auto-encoder variants
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2010-2012: Breakthrough in speech
recognition > in Androids by 2012
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Breakthrough in computer vision:
RO12-20186
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e 1000 object categories,
e Facebook: millions of faces
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Facebook, Google in 'Deep Learning'
Arms Race
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Google Beat Facebook for DeepMmd

Google Acqmres Artificial Intelllgence Startup Deepivilnd
For More Than $5ooM
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IT Companies are Racing nto

Deep Learhing
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Why is Deep Learning
Working so Well?
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Learning mut&i;pte. levels M
Qf TQPTQSQV\&QELOV\ (Lee, Largman, Pham & Ng, NIS 209)

) (Lee, Grosse, Ranganath & Ng, ICML 2009)
Successive model layers learn deeper intermediate representations

High-level
Layer 3 linguistic representations

Parts combine
to form objects

Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction



Google Image Search:

Different object types represented in the
same space
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Machine Learning, Al
# No Free Lunch

* Four key ingredients for ML towards Al
1. Lots & lots of data
2. Very flexible models

3. Enough computing power

4. Powerful priors that can defeat the curse of
dimensionality
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ML 10l, What We Are Fighting Against:
The Curse of Dimensionaliby

To generalize locally,
need representative
examples for all
relevant variations!

Classical solution: hope
for a smooth enough
target function, or
make it smooth by
handcrafting good
features / kernel

e 3 dimensions:
1000 positioms!



Bypassing the curse of
A?K«‘ev\si.ovmt&v

We need to build compositionality into our ML models

Just as human languages exploit compositionality to give
representations and meanings to complex ideas

Exploiting compositionality gives an exponential gain in
representational power
Distributed representations / embeddings: feature learning

Deep architecture: multiple levels of feature learning

Prior: compositionality is useful to describe the
world around us efficiently
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Nown-distributed representations

e (lustering, n-grams, Nearest-
Neighbors, RBF SVMs, local
non-parametric density
estimation & prediction,
decision trees, etc.

Clustering

e Parameters for each
distinguishable region

e # of distinguishable regions
is linear in # of parameters

- No non-trivial generalization to regions without examples
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The need for distributed
repre.sevx&a&iov\s
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Factor models, PCA, RBMs,
Neural Nets, Sparse Coding,
Deep Learning, etc.

Each parameter influences
many regions, not just local
neighbors

# of distinguishable regions

grows almost exponentially
with # of parameters

GENERALIZE NON-LOCALLY
TO NEVER-SEEN REGIONS

Multi-
Clustering

Sub-partiton 3
\
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Non-mutually
exclusive features/
attributes create a
combinatorially large
set of distinguiable
configurations



The Depth Prior can be Exponentially
Advantageous -

Theoretical arguments:

=

Logic gates

2 layers of = Formal neurons = universal approximator
RBF units

RBMs & auto-encoders = universal approximat
Theorems on advantage of depth:
(Hastad et al 86 & 91, Bengio et al 2007,
Bengio & Delalleau 2011, Braverman 2011,

Pascanu et al 2014, Montufar et al NIPS 2014) 1 2 3 2n

Some functions compactly

represented with k layers may
require exponential size with 2
layers 1 2 3 n



subroutine1 includes gybroutine? includes
subsub1 code and  sybsub2 code and
subsub2 code and  sybsub3 code and

subsubsub1 code subsubsub3 code and ...

\\ /

main

“Shallow” computer program



N

bsubsub1 subsubsub?

subsubsu //////////fBbSUbSUbs
subsub1 subsub? subsub3

sub //jgbZ sub3
\ . /

“Deep” computer program



A Myth is Being Debuniced: Local
Minima in Neural Nets

= Cov\ve.xi.&v s wolt needed

e (Pascanu, Dauphin, Ganguli, Bengio, arXiv May 2014): On the
saddle point problem for non-convex optimization

e (Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, NIPS’ 2014):
Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization

e (Choromanska, Henaff, Mathieu, Ben Arous & LeCun 2014): The
Loss Surface of Multilayer Nets
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Woitam Global Problem

Saddle Poinks

8.

e Local minima dominate in low-D, but |
saddle points dominate in high-D o1&

* Most local minima are close to the O/ 5%
bottom (global minimum error)
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Low Index Crikical Poinks

Choromanska et al & LeCun 2014, ‘The Loss Surface of Multilayer Nets’
Shows that deep rectifier nets are analogous to spherical spin-glass models

The low-index critical points of large models concentrate in a band just
above the global minimum
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'Deep Learhingg: Bevohd Patlern
Recognition, towards Al

e Many researchers believed that neural nets could at best be
good at pattern recognition

e And they are really good at it!
 But many more ingredients needed towards Al. Recent progress:

* REASONING: with extensions of recurrent neural networks

e Memory networks & Neural Turing Machine

* PLANNING & REINFORCEMENT LEARNING: DeepMind (Atari
game playing) & Berkeley (Robotic control)
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Speaking about what one sees
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Ongoing Progress: Combining Vision
and Natural Language Understanding

e Recurrent nets generating credible sentences, even better if
conditionally:

* Machine translation
Xu et al, ICML’2015
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* Image 2 text
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A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
- mountain in the background.
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A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.



Image-to-Text: Caption Generation

f=(a, man, is, jumping, into, a, lake, .)

Word

Recurrent
State

Attention
Mechanism

Adfnotation
Vectors

J

Convolutional Neural Network

(Xu et al., 2015), (Yao et al., 2015)
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Still some way to g0...

standing in a forest. A man wearing a hat and
a hat on a skateboard.

A person is standing on a beach A woman is sitting at a table A man is talking on his cell phone
with a surfboard. with a large pizza. while another man watches.
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The Next Frontier: Reasoning and
Question Answering

e Currently working on artificial tasks, with memory networks:

Joe went to the garden then Fred picked up the milk; Joe moved to the bathroom and Fred dropped the
milk, and then Dan moved to the living_room.

Where is Dan? A: living room [ believe

Where is Joe? A: the bathroom

Fred moved to the bedroom and Joe went to the kitchen then Joe took the milk there and Dan journeyed
to the bedroom; Joe discarded the milk.

Where is the milk now ? A: the milk is in the kitchen

Where is Dan now? A: | think he is in the bedroom

Joe took the milk there, after that Mike travelled to the office, then Joe went to the living_room, next Dan
went back to the kitchen and Joe travelled to the office.

Where is Joe now? A: I think Joe is in the office

From “Memory Networks”, Weston et al. ICLR 2015;
“End-to-end memory networks”, Sukhbatar et al. NIPS’2015

Sam walks into the kitchen. Brian is a lion. Mary journeyed to the den.

Sam picks up an apple. Julius is a lion. Mary went back to the kitchen.

Sam walks into the bedroom. Julius is white. John journeyed to the bedroom.

Sam drops the apple. Bernhard is green. Mary discarded the milk.

Q: Where is the apple? Q: What color is Brian? Q: Where was the milk before the den?
A. Bedroom A. White A. Hallway

29



Beyond Object Recognition and
Caption Greneration

Visual Question
Answering (Antol et
al 2015)

Jane went to the hallway.

Mary walked to the bathroom.
Sandra went to the garden.
Daniel went back to the garden.
Sandra took the milk there.
Where is the milk?

garden

How many shices of pzza ae theee?
IS s & vegetarian plzza?

B BN Pon expectng compasy”? Does i appear 10 be rany?
30 Wi 15 st under the bee? Does thes person have 20020 vison?



Attention Mechanisms for Memory
Access Enable Reasoning

e Neural Turing Machines (Graves et al 2014)
and Memory Networks (Weston et al 2014)

e Use a form of attention mechanism to
control the read and write access into a
memory

e The attention mechanism outputs a softmax
over memory locations
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Why does it work? Pushing off the
Cufse of Long-Term Dependencies

e Whereas LSTM memories always decay exponentially (even if
slowly), a mental state stored in an external memory can stay
for arbitrarily long durations, until overwritten.
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Learning Multiple Levels of
Abstraction

e The big payoff of deep learning is to allow learning
higher levels of abstraction

e Higher-level abstractions disentangle the

factors of variation, which allows much easier
generalization and transfer

Organizational Maturity
Abstraction Level
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How do humans generalize
from very few examples?

* Intelligence (good generalization) needs knowledge

* Humans transfer knowledge from previous learning:

* Representations

* Explanatory factors

* Previous learning from: unlabeled data

+ labels for other tasks
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Unsupervised and T ransfer Learning Challenge
+ Transfer Learning Challenge: Won by
Unsupervised Deep Learning

NIPS’2011
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Extracting Structure By Gradual
Disentangling and Manifold Unfolding

& Variational Auto-Encoders 3
Ag P(
Q(h,)
Each level transforms the T gt
data into a representation in Tf Tg
which it is easier to model, L L

unfolding it more,
contracting the noise

Q(h,lh,) |f g, P(h,[h;)
dimensions and mapping the o ’ ’

signal dimensions to a alh,) P(
factorized (uniform-like) o Pl
distribution. Q(h,/x) sz l

Q(x)
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The Current SOTA in """"1"'

Grenerative Models of gaamisEsEs -- -----

Images
DRAW, (Gregor et al 2015)
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MILA: Monbreal Institute for Learning Algorithms
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