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Large Scale Visual Computing (LSVC): 
Definition

• Visual Computing
¾ Processing and analyzing visual information

• Large Scale Visual Computing
¾ Processing and analyzing “large” scale visual 

information
¾ Large scale in volume
¾ Large variety in categories
¾ Large inhomogeneity in properties



LSVC: Importance
Growth in Video Surveillance Data（PB）
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Proliferation of Surveillance Cameras



India’s UID Program



• Large scale in volume:
• Computational efficiency

• 300

LSVC : Major Challenges (1)

50 hours new videos every minutes 300 million new photos everyday



• Large variety in categories: 
• Generalizability and applicability

LSVC : Major Challenges (2)

VOC dataset：
20 object classes, <20K images

Top 1 Recognition Accuracy：>90%

ImageNet dataset：
1000 object classes, >1.3m images

Top 1 Recognition Accuracy：< 70%



documents, images, videos, 
voice…

• Large inhomogeneity in properties: 
• Robustness and stability

LSVC : Major Challenges (3)



LSVC : Key Problems

Main Topics
• Feature representations
• Model learning
• Transfer learning
• Datasets issues
• ……

NIPS2012 Workshop：
Large Scale Visual Recognition and Retrieval
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Multi-modality Multi-source

How to find robust representation for 
multi-modality and multi-source big 

visual data?

Robust feature
representation

Feature Representation 

documents, images, videos, voice…



Feature Representation:
Mapping from Image Space to Feature Space

Maximize inter-class distance D Separability

RobustnessMinimize intra-class distance R

Intra-class distance

Inter-class
distance

Class 3

Class 1
Class 2



Ratio Measures

Interval Measures

Ordinal Measures

S. Stevens, “On the Theory of Scales of Measurement”, Science, Vol.103, No.2684, 
pp.677-680, June 1946.

class label   =, ≠

order info.  =, ≠, >, <

quantitative difference 
=, ≠, >, < , +, -

have zero concept
=, ≠, >, < , +, -, *, /

Robustness

Separability

Ordinal Feature Representation 



Biological Support for OM



Weight
Height

Ordinal Measures (OM) in Everyday Life



We have developed very efficient and robust iris
recognition algorithms based on ordinal measures.

Zhenan Sun and Tieniu Tan, "Ordinal Measures for Iris Recognition," IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 31, No. 12, 2009, pp. 2211 - 2226.



Tieniu Tan, Xiaobo Zhang, Zhenan Sun,
and Man Zhang, “Noisy Iris Image
Matching by Using Multiple Cues”,
Pattern Recognition Letters, 2012. （Invited
paper)



Iris Recognition for Coal Miner Identification

http://www.IrisKing.com



Iris Recognition at A Distance

CASIA



Other Applications of Ordinal Measures

Biometrics Image retrieval

Stereo vision Object detection
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Large inhomogeneity 
in properties

ImageNet：1000 categories

Large variety in 
categories

Manually designed features are
often unable to cope with large
inhomogeneity in properties and
large variety in categories

Directly learn models from data

Model Learning



An important motivation of deep learning is 
the big visual data

A Breakthrough: Deep Learning

Traditional pipeline

Need rich experience for hand-crafting 
feature design

Feature 
extraction

Pattern 
classificationDeep Learning Zebra

End-to-end Model Learning
Classifier 
training

• No hand-crafting feature design
• Directly map from pixels to labels
• Use big visual data to deal with

varieties

The answer is hidden in the big data!



Biologically inspired deep learning promotes the 
fast development of many fields in computer vision

Deep Learning + X



The pipeline of CNN-based object classification

Visualization of the first layer
Traditional hand-crafting features

A. Krizhevsky and J. Hinton, Image Classification Based on Convolutional Neuron Networks, NIPS2012

Object Classification



Traditional shallow models
72%  2010
74%  2011

CNN based deep models
85%  2012
89%  2013
94%  2014
>95% 2015

Human: 95%

http://imagenet.org/challenges/LSVRC/{2010,2011,2012,2013,2014}

Object Classification on ImageNet2012



Object Detection

Some best results on PASCAL VOC2010

Ross et al., Rich feature hierarchies for accurate object detection and 
semantic segmentation, CVPR2014



200 categories object detection competition on ImageNet2013 

The previous best traditional algorithm (deformable part model) can only achieve 9% in accuracy

Now the best result (based on deep learning) is more than 50% in accuracy.
W. Ouyang, et. al, DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection, CVPR2015



Object Segmentation
Multi-scale CNN for human segmentation

Novelty:
• For each pixel, we use three different scales of windows, each of which is

described by a powerful CNN to model the relationship between a pixel and its
thousands of neighboring pixels.

• Multi-scale CNNs are robust to different scales of object segmentation



Champion in a human segmentation competition

Complex backgrounds Various posesMultiple scales



Input
Image

Manual
Results

Our 
Results



Object Retrieval

Fang Zhao, Yongzhen Huang, Liang Wang, and Tieniu Tan, Deep Semantic Ranking Based 
Hashing for Multi-Label Image Retrieval, CVPR2015 

Novelty: Combine semantic ranking and CNN to address the problem of
preserving multilevel semantic similarity for hashing



Example results of our retrieval algorithm



Example results of our retrieval algorithm



Deep Learning: A Panacea?

• Deep learning is a shallow model of brain
mechanisms

• When is it deep enough or how deep is 
deep?

• Theoretical explanation of its effectiveness?

• Computational complexity
• Access to large amount of annotated or 

labeled data for training



Category: Yes    Location: No

Weak Annotation

In large-scale applications, annotating object location can
be very laborious and can also be ambiguous.

Category: Yes    
Location: Yes

Strong Annotation

Category: Yes    Location: Noisy

Noisy Annotation



Positive Images
Negative Images

Positive instance

Negative instance

Positive bag

Negative bag

Conv.
Nets

Input Images Region Proposals Representations MILinear Mining

Weakly Supervised Object Detection

Novelty: To reduce ambiguity in positive images,
we present a bag-splitting algorithm that
iteratively generates new negative bags from
positive ones

Move low-score positive
instances to negative part



Weiqiang Ren, Kaiqi Huang, Dacheng Tao, Tieniu Tan. Weakly
Supervised Large Scale Object Localization with Multiple Instance
Learning and Bag Splitting, IEEE TPAMI (to appear)
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Large-Scale Visual Surveillance



Large-Scale Visual Surveillance (LSVS)



• Background modeling • Object detection

• Object tracking • Behavior recognition

Key Problems in LSVS



• Multi-modality/multi-distribution
• Multi-view, occlusion, multi-scale, cluttered 

background, etc.

• Model scalability
• How to scale up to large scale applications: 

scalable feature representation, scalable model 
inference, etc.

LSVS: Major Challenges



Problem Statement:
• Establish object correspondences 

between non-overlapping cameras to 
make sure each object has a unique 
identity across the entire camera network.

Multi-object Tracking in Non-
overlapping Camera Networks



Multi-object Tracking in Non-
overlapping Camera Networks

The problem is formulated as an integer programming problem solved by 
finding the maximum weight independent set (MWIS) in a global graph.



Constructing the Graph
N

od
es • Nodes are 

candidate 
matches (a 
departure  
object vs. an 
arrival object).

• Depend on 
topology 
estimation to 
get inter-
camera spatio-
temporal cues.

Ed
ge

s • Two nodes are 
linked together 
when sharing 
common 
objects, i.e., 
conflicting with 
the fact that an 
object can not 
appear in two 
different places 
at the same 
time.

W
ei

gh
ts • Weights are 

similarities 
based on object 
matching.

• Need color 
transfer to deal 
with 
illumination 
variance 
between 
different views.



Key Problems 

• Topology estimation • Color transfer between cameras

• Object matching • Find the MWIS solution 
• NP-hard

1 2

3 4
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• Nodes, defined either as the entry/exit zones in the field of 
views of cameras or single cameras.

• Links across cameras, which indicate the connectivity of nodes.

• Transition time probability distribution for each link, demonstrating the 
average transition time of objects moving from one node to 
another.

� �,i jP t

� �,i jP t

� �,i jP t

� �,i jP t

� �,i jP t

Topology Estimation1



• Propose N-neighbor accumulated cross-correlation 
functions based on the following observation:

• Transition time by correct matches is generally distributed 
around the average transition time, while transition time by 
wrong matches is randomly distributed.

Topology Estimation based on N-neighbor 
Accumulated Cross-correlation Functions

D𝑖 𝑡 is the departure time 
sequence observed at node 𝑖, 
and 𝐴𝑗 𝑡 is the arrival time 
sequence observed at node 𝑗.

Unlike previous cross-correlation based work, our topology 
recovering method can deal with large amounts of data without 
considering the size of time window.



Topology Estimation based on N-neighbor 
Accumulated Cross-correlation Functions

• Generally, N-neighbor 
accumulated cross-correlation 
function converges quickly 
when there is a link between 
these two nodes (entry/exit 
zones). 

• The location of the clear peak 
denotes average transition 
time between these two nodes.



• Real-world three-camera network

Experimental Results

Distribution map



Experimental Results

Topology [Makris 2004]

Our methoda clear peak
X.T. Chen, K.Q. Huang and
T.N. Tan, Learning the three
factors of a non-
overlapping multi-camera
network topology, CCPR,
2012. (Best Paper)



• Problem
• Illumination changes with both the viewpoints 

(cameras) and time.

• Illumination variance has a large influence over the 
appearance of objects.

Color Transfer between Cameras2



• Our method
• Apply a color characteristic transfer method to 

impose the color characteristics of a target 
image on a source image [Reinhard 2001]

Color Transfer between Cameras

Advantage:
• Low requirements to the 

training set: a single pair of 
corresponding observations 
can meet the requirement, 
making updates efficient.



• Step 1：given a target-source image pair, 
calculate the corresponding color characteristic 
transfer (CCT) model：

Algorithm Description

Source image

Target image

Transferred image

lDE

lDE

RGB



• Step 2: the source image is transferred to the 
target image appearance using the CCT 
model .

Algorithm Description

Under 𝐶𝑎𝑚𝑥
观测表观

Under 𝐶𝑎𝑚𝑦
观测表观

Estimated 
appearance 
under 𝐶𝑎𝑚𝑦
观测表观



Experimental Results

These CMC (cumulative matching characteristic) curves show the improvements of 
different color transfer methods on the performance of object re-identification.

(1) Performance is different with transfer directions.
(2) The proposed method (CCT) performs best as it does not depend on 
a large scale pre-labeled training dataset.



实验结果

X.T. Chen，K.Q. Huang and T.N.
Tan. Object tracking across
non-overlapping views by
learning inter-camera transfer
models, PR, 2013.

Some examples 
using different 
color transfer 
methods



Object Matching 
(Computing Object Similarity)3

• Problem
• Object appearance varies considerably across 

cameras due to factors such as illumination, 
camera properties, viewpoints, poses and non-
uniform clothing.



Object Matching
(Computing Object Similarity)



Find the MWIS Solution4

• Build the graph
• Nodes:

• Candidate object pairs which are constrained by 
spatio-temporal cues (e.g. the connectivity and 
average transition time between two entry/exit 
zones)

• Edges:
• Two nodes are linked together when they contain 

a same object, no matter it is a departure object 
or an arrival object.

• Weights of Nodes:
• Similarities between the two objects in the same 

nodes



Find the MWIS Solution
• Build the graph

The graph is trimmed by deleting nodes (circled by dotted lines) 
whose weights are below a threshold and edges connecting with 
them.
The nodes circled by red solid lines make an independent set.

To find the MWIS solution:
Step1. find all the independent set
• an accelerated algorithm is presented to speed up the ergodic search of 

all the independent sets.
Step2. find the independent set with the maximum of the sum of weights

𝑁𝑣 is the number of nodes in 𝐺𝑤;
𝑤𝑣 is the weight of Node 𝑣.

It is a NP-hard problem!



• NLPR-MCT Dataset (http://mct.idealtest.org/)
• Contain four datasets collected from different non-

overlapping camera networks.
• The ground truth of single camera object tracking results is 

given.

• Evaluation criteria
• tracking accuracy of object tracking across cameras
• 𝑚𝑐𝑡𝑎 = 1 −𝑀𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑐𝑟𝑜𝑠𝑠/𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑐𝑟𝑜𝑠𝑠

Experiments

[1] X.T. Chen, J.G. Zhang, K.Q. Huang and T.N. Tan, Object Tracking across Non-overlapping Cameras by Finding Maximum Weight 
Independent Sets, submitted to TCSVT 2015.
[2] Y. Cai and G. Medioni, “Exploring context information for inter-camera multiple target tracking,” in Proc. IEEE Winter Conference on
Applications of Computer Vision, 2014, pp. 761–768.

[1]

[2]

http://mct.idealtest.org/


Tracking Results
• Four-camera network with non-overlapping 

views



Tracking Results



Tracking Results
• Five-camera network with non-overlapping 

views



Tracking Results
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• Exponential growth in visual data calls for
large-scale visual computing (e.g. large-scale
visual surveillance)

• Availability of big visual data facilitates deep
learning, which in turn helps LSVC

• Despite of the significant progress made with
deep learning, machine vision is still far away
from human vision, especially for high-level
visual tasks, e.g., semantic understanding of
dynamic scenes.

Conclusions



• What, Where, How, Why are the four key problems in
computer vision. Currently, we have made great progress in
What and Where, but not much on How and Why, which
are even more important in large scale visual computing.

• Current research focuses on “visible” appearance of
objects, but ignores “logic” and “common sense”, two
very challenging and open problems for ultimate tasks of
large scale visual computing.

Slide credit: Song-Chun Zhu

Conclusions
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