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- Background and Context



Large Scale Visual Computing (LSVC):
Definition

» Visual Computing

> Processing and analyzing visual information

- Large Scale Visual Computing

> Processing and analyzing “large” scale visual
information

» Large scale in volume
» Large variety in categories

» Large inhomogeneity in properties



LSVC: Importance

Growth in Video Surveillance Data ( PB ) " Increase rate of data
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Proliferation of Surveillance Cameras




India’s UID Program
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LSVC : Major Challenges (1)

* Large scale in volume:

* Computational efficiency

What If Evigilon

JUMPED At

50 hours new videos every minutes 300 million new photos everyday



LSVC : Major Challenges (2)

* Large variety in categories:
* Generalizability and applicability

VOC dataset : ImageNet dataset :

20 object classes, <20K images 1000 object classes, >1.3m images
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Top 1 Recognition Accuracy : >90% Top 1 Recognition Accuracy : <70%



LSVC : Major Challenges (3)

* Large inhomogeneity in properties:
* Robustness and stability
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LSVC : Key Problems

4 )

NIPS2012 Workshop :
Large Scale Visual Recognition and Retrieval

- Feature representations
« Model learning
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- Feature Representation



Feature Representation
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documents, images, videos, voice...

Multi-modality
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Feature Representation:
Mapping from Image Space to Feature Space
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i Ordinal Feature Representation

have zero concept
=I ¢I >I <I+I _I*I/

quantitative difference
= ¢I >, <, + -

Ordinal Measures order info. =, #, >, <

class label =, #

| Nominal Measures |
Separabilit S~— 7

S. Stevens, “On the Theory of Scales of Measurement” , Science, Vol.103, No.2684,
pp.677-680, June 1946.




Duane G. Albrecht and David B. Hamilton. Striate cortex of the monkeyv and

cat: Contrast response function. Journal of Neuroscience. 48(1):217-237, July

1982,



Ordinal Measures (OM) in Everyday Life




We have developed very efficient and robust iris
recognition algorithms based on ordinal measures.
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Zhenan Sun and Tieniu Tan, "Ordinal Measures for Iris Recognition,"” IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 31, No. 12, 2009, pp. 2211 - 2226.




» NICE:II

Noisy Iris Challenge Evaluation - Part II

[

L tsuppontlists). ve <! [endf). >September 06'™, 2010: The classificaton of the NICE.II best
PaBopants it svaslable on the contest website. Addtionally, the fll casnfication resuits weee
sent by amad to ol particpants.

Patiopants evited 1o publsh thar spproach in the Pattem Recogntion Letters Joumal:

(1“\‘?"1’:?3'« ________ el Ticniu Tan, Xiaobo Zhang, Zhenan Sun,

and Man Zhang, “Noisy Iris Image
Matching by Using Multiple Cues” ,
Pattern Recognition Letters, 2012. (Invited

paper)
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Iris Recognition for Coal Miner Identification
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Iris Recognition at A Distance
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Other Applications of Ordinal Measures
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Outline

- Model Learning



Model Learning

ImageNet : 1000 categories
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YA Breakthrough: Deep Learning

Traditional pipeline
State-of-the-art:
“hand-crafting”

>

Faaline Classifier |
Inputdata | =) | o centation| ™= training ~~==3 End-to-end Model Learning ===~

| — * No hand-crafting feature design
- |- =

* Directly map from pixels to labels
Image Low-level Object detection

« Use big visual data to deal with

vision features / classification 1ot
(SIFT. HOG. etc.) varieties

Need rich experience for hand-crafting
feature design

The answer is hidden in the big data!

An important motivation of deep learning is
the big visual data



Deep Learning + X

object models

Area V4« # o o ¢ Higherlevel visu:
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Biologically inspired deep learning promotes the
fast development of many fields in computer vision
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5 Object Classification
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A. Krizhevsky and J. Hinton, Image Classification Based on Convolutional Neuron Networks, NIPS2012
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. Object Classification on ImageNet2012

Traditional shallow models
72% 2010
74% 2011

CNN based deep models
85% 2012

89% 2013

94% 2014

>95% 2015

Human: 95%

http://imagenet.org/challenges/LSVRC/{2010,2011,2012,2013,2014}
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1. Input

Object Detection

. -
2. Extract region 3. Compute 4. Classify

image proposals (~2k) CNN features regions
VOC 2010 test | aecro bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv | mAP
DPMvS [20]" |49.2 538 13.1 153 355 534 497 27.0 17.2 288 147 178 464 512 477 108 342 207 438 383|334
UVA [ ] 56.2 424 153 126 21.8 49.3 368 46.1 129 32.1 30.0 365 435 529 329 153 41.1 318 47.0 448 35.1
Regionlets [11]]65.0 489 259 246 245 56.1 545 51.2 17.0 289 302 358 402 557 435 143 439 326 540 459|397
SegDPM [15]' [61.4 534 256 252 355 51.7 506 508 193 338 268 404 483 544 471 148 387 350 528 43.1|404
R-CNN 67.1 64.1 46.7 320 305 564 57.2 659 27.0 473 409 666 578 659 536 267 565 38.1 528 50.2|50.2
R-CNN BB 71.8 658 53.0 368 359 359.7 60.0 699 279 50.6 414 70.0 620 690 581 295 394 393 61.2 524|537

Some best results on PASCAL VOC2010

Ross et al., Rich feature hierarchies for accurate object detection and
semantic segmentation, CVPR2014




200 categories object detection competition on ImageNet2013
ILSVRC2013 detection test set mAP

R-CNN BB 4%

OverFeat (2) °4.3% -

UvA-Euvision 22 6% d
NEC-MU -_’uu'-é
OverFeat (1) - 1V.4% R

Toronto A - 11.5%
SYSU _Vision - 10.5% ,
GPU UCLA -t),\";

Delta .h.l'& '
B competition result
UIUC-IFP l 1.0% B ot competition result]
: A o . = - — ~
1) ) 40 oA) 80) 1(X)

mean average precision (mAP) in %

The previous best traditional algorithm (deformable part model) can only achieve 9% in accuracy

Now the best result (based on deep learning) is more than 50% in accuracy.
W. Ouyang, et. al, DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection, CVPR2015
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Object Segmentation

Multi-scale CNN for human segmentation

Context Presentation
Hierarchy Extractor Classifier

S-stage CNN

> 5.stage CNN 2 MLP

Novelty:
* For each pixel, we use three different scales of windows, each of which is

described by a powerful CNN to model the relationship between a pixel and its

thousands of neighboring pixels.
 Multi-scale CNNs are robust to different scales of object segmentation



Champion in a human segmentation competition

Nark Name SCore Publish Time

1 NLPRECRIPAL DR581 Tue Oct 15 (ST 2013
Freedom 0.781) Tue Oct 1S CST 2013
3 WEESEE 0.7600 Tue Oct 15 CST 2013
4 CASIA G 0.755% Tue Oct 15 CST 2014
5 D1 _ppeeg 0.7587 Tue Oct 15 CST 2013
6 FyHigh 0.7328 Tue Oct 15 CST 2013
7 Eagletye 072113 Tue Oct 15 CST 2013
8 Sysu_vision 0.7167 Tue Oct 15 CST 2013
9 Desplesmmer 06111 Tue Oct 15 CST 2013
10 RandomForest 05117 Tue Oct 15 CST 2013

0 . T T T ™ T 0
A
B
100§ 100
200 200
300 300
400 400

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

0 200 400 600 800 1000 200 400 600 800 1000

Coﬂmplex bakrounds Multiple scales Various poses







Object Retrieval

Semantic ranking supervision

Deep feature

adew AzanD
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' similarity
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’ ]
‘e
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R Py

Compact
hash codes

Muilti-label images

CNN models

Novelty: Combine semantic ranking and CNN to address the problem of
preserving multilevel semantic similarity for hashing

Fang Zhao, Yongzhen Huang, Liang Wang, and Tieniu Tan, Deep Semantic Ranking Based
Hashing for Multi-Label Image Retrieval, CVPR2015



Example results of our retrieval algorithm
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Example results of our retrieval algorithm
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Deep Learning: A Panacea?

« Deep learning is a shallow model of brain
mechanisms

* When is it deep enough or how deep is
deep?

 Theoretical explanation of its effectiveness?

- Computational complexity
 Access to large amount of annotated or
labeled data for training



In large-scale applications, annotating object location can
be very laborious and can also be ambiguous.

Strong Annotation

Category: Yes
Location: Yes

Category: Yes Location: Noisy



Weakly Supervised Object Detection

Novelty: To reduce ambiguity in positive images,
we present a bag-splitting algorithm that
iteratively generates new negative bags from
positive ones '

.
.
¥

Move low-score positive {‘ AAA A\ )
instances to negative part N A "/
-

s k- B Positive instance O Positive bag
M - A Negative instance :'.:‘Negative bag

Input Images Region Proposals Representations MILinear Mining




Comparison of detection results (Average Precision, AP) on VOC2007 dataset. The first 3 rows
are the state-of-the-art results for supervised object detection. The last 7 rows list the results from
weakly supervised localization.

Muthads Mbthwdbmtlm&buwMchmmwlt&d("hwmblhmnﬂmlmmhmwmAP

DIV [N 0 [546] 06 | 1241 02 [DATHAIIAT 16 JIGS M550 L 436 | 78 | XS0 | S8 | 173 |26 MO [0 )

DPMvS 2] N2 |0I102]161] 223 SIS {00 200 I N1 | 267 1127) 881 | 482 | €2 [ 120 211 |1 | 0 (0S5 007

RAONN G [S3) | SAT | SRR M4 206 ) 226 [S04S50 525 IR0 400 | 400 [468] 4u5 | 505 | w0 [ 200 | 404 |04 0% 0| 4

Svad d [12] | 0N M0 AT LA 00 [M2IAR0[ 7T AN [N 00 1S 4] Y | 46 |00 | o4 |8 M2[00) 1N

O o Bl S 1 T e B Hlasldal e 1isalsalll nf i A . A e 15151 2100
CovereSVM N | 204 (OS24 80 ] A2 (000N 1040 0) [V NS 27 [ 402 ] 24 [ W8] 4 05108 a2
Covere [SYMIS] | 282 | Q2 176 %6 | &5 |M7ISS5(3S5] 0 N7 (121207 52 | W8 | 126 [ 186 ] 22 (186 307102 2

CoversSISVM [IS] | 276 |019 1197 90 | 104 (2551090 |306) 06 1209 10 |277] 294 | 92 | 91 | 193 | 208 |71 M6 | 70 | 227
Mudti-fold MIL [17) | 355 (406 &1 [ 76 | X1 |59 408 MKLH LAV I N A9 19 [N T RN e R4
Ours{nobiS) 09 | IR0 ST 16 | XNT lS.? OF J333) 152 1200] 257 | 426 | 191 (170 204 (209 M3 113 24
Ours(BS1) O3 [ W71 20] 95129 [N0[as0 (19 10 300 160 (205) 025 | 408 | 208 |87 | 215 | 223 M0 | 180] 54

Weigiang Ren, Kaigi Huang, Dacheng Tao, Tieniu Tan. Weakly
Supervised Large Scale Object Localization with Multiple Instance
Learning and Bag Splitting, IEEE TPAMI (to appear)






Outline

« LSVC: An Example

 Large-Scale Visual Surveillance



Large-Scale Visual Surveillance




Large-Scale Visual Surveillance (LSVS)




Key Problems in LSVS

- Background modeling

B moving kft
W aying

I moving right
. I moving right




LSVS: Major Challenges

» Multi-modality/multi-distribution

« Multi-view, occlusion, multi-scale, cluttered
background, etc.

» Model scalability

« How to scale up to large scale applications:
scalable feature representation, scalable model
inference, etc.



Multi-object Tracking in Non-
overlapping Camera Networks

Problem Statement;:

- Establish object correspondences
between non-overlapping cameras to
make sure each object has a unique
identity across the entire camera network.




Multi-object Tracking in Non-
overlapping Camera Networks

Enter Camn
ﬁ e '-;. Sequence based Matching Framework
= [
" [ T’\
By - Spabetrmpont Cues Ottuned | |
< by Yepelogy Dvionation [ '

Sequence baned Matching Framework

Enter Cam b
' SR AL 23[ ] [ IW J $nNmJ ._{jﬂdﬂu
— Extraction Exte v Measare | '] Soore

The problem is formulated as an integer programming problem solved by
finding the maximum weight independent set (MWIS) in a global graph.



Constructing the Graph

e Nodes are
candidate
matches (a
departure
object vs. an
arrival object).

Depend on
topology
estimation to
get inter-
camera spatio-
temporal cues.

Edges ©

e Two nodes are

linked together
when sharing
common
objects, i.e.,

conflicting with
the fact that an
object can not
appear in two
different places
at the same
time.

e Weights are

similarities
based on object
matching.

Need color
transfer to deal
with
illumination
variance
between
different views.




Key Problems

- Topology estimation  Color transfer between cameras

~ T RIEMMRRE
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« Find the MWIS solution
« NP-hard




@ Topology Estimation

Nodes, defined either as the entry/exit zones in the field of
views of cameras or single cameras.

Links across cameras, which indicate the connectivity of nodes.

Transition time probability distribution for each link, demonstrating the

average transition time of objects moving from one node to
another.



Topology Estimation based on N-neighbor
Accumulated Cross-correlation Functions

* Propose N-neighbor accumulated cross-correlation
functions based on the following observation:

« Transition time by correct matches is generally distributed
around the average transition time, while transition time by

wrong matches is randomly distributed.

TN

R:)-j rn o R]'j r' . .
(%) OZ " (7o) D;(t) is the departure time
Ta ¥t sequence observed at node i,
- r(';-"E[D, (1) 4, (1+7,)] and A;(t) is the arrival time

sequence observed at node j.

TN -~

2 ZDz(’)'A_, (t+7,), 7,2n

Ta
0

Unlike previous cross-correlation based work, our topology

recovering method can deal with large amounts of data without
considering the size of time window.




Topology Estimation based on N-neighbor
Accumulated Cross-correlation Functions

N-nesghbor accumualed oross comaation furction
7 ~ - S e Y IS e

Generally, N-neighbor :
accumulated cross-correlation
function converges quickly
when there is a link between

these two nodes (entry/exit
zones).

The location of the clear peak
denotes average transition
time between these two nodes.




Experimental Results

e Real-world three-camera network

\Camcm 1

Camera 2




Experimental Results

Teoe

X.T. Chen, K.Q. Huang and
T.N. Tan, Learning the three
factors of a non-

overlapping multi-camera
network topology, CCPR,
2012. (Best Paper)
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@ Color Transfer between Cameras

e Problem

* [llumination changes with both the viewpoints
(cameras) and time.

« [llumination variance has a large influence over the
appearance of objects.

BT Y
ST



Color Transfer between Cameras

« Our method

» Apply a color characteristic transfer method to
impose the color characteristics of a target
Image on a source image [Reinhard 2001]

Advantage:

e Low requirements to the
training set: a single pair of
corresponding observations
can meet the requirement,
making updates efficient.




Algorithm Description

« Step 1: given a target-source image pair,
calculate the corresponding color characteristic

transfer (CCT) model:
‘75 oy ‘7? l " 3 l ' 3
{a{, 2 B T TV T T T T }

‘.‘0,8 S-

| '”:> laf [II]I:> ol 0% of ml m® mf' @
24l ' i'._“; [ v /’ )

Targetimaée | S e
R . <:m RGB <}:II]I1 o (a, —) +
i , u,- o).

Transferred image

|u:> laf uu:> ol 02 of ml m¢ m] ﬁ

Source image




Algorithm Description

« Step 2: the source image is transferred to the

target image appearance using the CCT
model .

-

? Il > i ”\\[5
2 , v '
= g:-u_l:f —m)+m;
Under Cam,, % Estimated Under Cam,,
Q5= (T’ a 0 “
Qa, = 7o (&, — T, ) + 173, appearance

o ol | under Camy



Experimental Results

>

(1) Performance is different with transfer directions.

(2) The proposed method (CCT) performs best as it does not depend on

a large scale pre-labeled training dataset.



Some examples
using different
color transfer
methods

X.T. Chen, K.Q. Huang and T.N.
Tan. Object tracking across

non-overlapping views by
learning inter-camera transfer
models, PR, 2013.

- FRILAINNEe
SNt ALY
oo TPV RENR 6 E
o YU TRANNE
o FREVAENN 6
ey JATRANS
o TREVRENL 6
el [YYAS Y,



o Object Matching
(Computlng Object Similarity)

 Problem

- Object appearance varies considerably across
cameras due to factors such as illumination,
camera properties, viewpoints, poses and non-
uniform clothing.




Object Matching
(Computing Object Similarity)




@ Find the MWIS Solution
» Build the graph

* Nodes:

« Candidate object pairs which are constrained by
spatio-temporal cues (e.g. the connectivity and
average transition time between two entry/exit
Zones)

 Edges:
« Two nodes are linked together when they contain

a same object, no matter it is a departure object
or an arrival object.

« Weights of Nodes:

 Similarities between the two objects in the same
nodes



Find the MWIS Solution

——————

-

‘a 1 ‘-‘J\rv

A A | P v N, >4

LA i

jpe—I

1P maxz: Wy X = .
v=1 ‘ ) \

st.YweV, x,e€{0,1}
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N, is the number of nodes in G,,;
w,, is the weight of Node v.

To find the MWIS solution:
Stepl. find all the independent set

an accelerated algorithm is presented to speed up the ergodic search of
all the independent sets.

Step2. find the independent set with the maximum of the sum of weights




Experiments

« NLPR-MCT Dataset (http://mct.idealtest.org/)

 Contain four datasets collected from different non-
overlapping camera networks.

- The ground truth of single camera object tracking results is
given.

« Evaluation criteria
« tracking accuracy of object tracking across cameras
* mcta = 1 — Mismatch,,,ss/TruePositive, , s

TRACKING PERFORMANCE ON THE NLPR-MCT DATASET.

mcta Dataset Dataset Dataset Dataset
1 2 3 4
MWIS-MCT [ 0.925 0.875 0.855 0.762
Cai @ 0915 0.913 0.516 0.705

[1] X.T. Chen, J.G. Zhang, K.Q. Huang and T.N. Tan, Object Tracking across Non-overlapping Cameras by Finding Maximum Weight

Independent Sets, submitted to TCSVT 2015.
[2] Y. Cai and G. Medioni, “Exploring context information for inter-camera multiple target tracking,” in Proc. IEEE Winter Conference on

Applications of Computer Vision, 2014, pp. 761-768.
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Tracking Results

« Four-camera network with non-overlapping
views

Camera 1l Camera 2
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Tracking Results

- Five-camera network with non-overlapping
views

Camera d Cameral Camera 1
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Outline

e Conclusions



Conclusions

 Exponential growth in visual data calls for
large-scale visual computing (e.g. large-scale
visual surveillance)

* Availability of big visual data facilitates deep
learning, which in turn helps LSVC

* Despite of the significant progress made with
deep learning, machine vision is still far away
from human vision, especially for high-level
visual tasks, e.g., semantic understanding of
dynamic scenes.



Conclusions

« What, Where, How, Why are the four key problems in
computer vision. Currently, we have made great progress in
What and Where, but not much on How and Why, which
are even more important in large scale visual computing.

» Current research focuses on “visible” appearance of
objects, but ignores “logic” and “common sense”, two
very challenging and open problems for ultimate tasks of

large scale visual computing.

Slide credit: Song-Chun Zhu
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